ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS

M. DJAA, A. M. CHERIF, K. ZEGGA AND S. OUAKKAS

(Communicated by Grozio STANILOV)

Abstract. In this note, we extend the definition of harmonic and biharmonic maps between two Riemannian manifolds, and we present some properties for \(f \)-harmonic maps and \(f \)-biharmonic maps.

1. \(f \)-HARMONIC MAPS

Definition 1.1. Consider a smooth map \(\varphi : (M^m, g) \longrightarrow (N^n, h) \) between Riemannian manifolds and \(f : (x, y) \in M \times N \longrightarrow f(x, y) \in (0, +\infty) \) be a smooth positive function. The \(f \)-energy functional of \(\varphi \) is defined by

\[
E_f(\varphi) = \frac{1}{2} \int_M f(x, \varphi(x)) |d\varphi|^2 v_g
\]

(or over any compact subset \(K \subset M \)).

A map is called \(f \)-harmonic if it is a critical point of the \(f \)-energy functional over any compact subset of \(M \).

Remark 1.1. :
- Definition 1.1, is a natural generalization of harmonic map ([2], [6], [7]) and \(f \)-harmonic map ([5], [10]).
- Definition 1.1, is also a generalization of \(p \)-harmonic map ([3]) and \(F \)-harmonic map [1]), when \(\varphi \) has no critical points.

1.1. The first variation of the \(f \)-energy. Let \(\varphi : (M^m, g) \longrightarrow (N^n, h) \) be a smooth map, we denote by :

\[
\tau(\varphi) = \text{trace}_g \nabla d\varphi
\]

the tension field of \(\varphi \), and \(e(\varphi) = \frac{1}{2} |d\varphi|^2 \) the energy density of \(\varphi \) (for more detail, see [2], [4], [6] and [7]).
Theorem 1.1. Let \(I = (-\epsilon, \epsilon) \subset \mathbb{R} \) and \(\{ \varphi_t \}_{t \in I} \) be a smooth variation of \(\varphi \). Then

\[
\frac{d}{dt} E_f(\varphi_t) \bigg|_{t=0} = -\int_M h(\tau_f(\varphi), v) g, \tag{1.2}
\]

where

\[
\tau_f(\varphi) = f \varphi \tau(\varphi) + d\varphi(\text{grad}^M f \varphi) - e(\varphi)(\text{grad}^N f) \circ \varphi, \tag{1.3}
\]

\(f \varphi \) is the smooth function \(x \in M^m \to f(\varphi(x)) \in (0, +\infty) \), and \(v = \frac{\partial \varphi}{\partial t} \bigg|_{t=0} \) denotes the variation vector field of \(\{ \varphi_t \}_{t \in I} \).

Proof:

Let \(\phi : I \times M \to N \) be a smooth map satisfying for all \(t \in I \) and all \(x \in M \)

\[
\phi(t, x) = \varphi_t(x),
\]

and

\[
\phi(0, x) = \varphi(x).
\]

The variation vector field \(v \in \Gamma(\varphi^{-1}TN) \) associated to the variation \(\{ \varphi_t \}_{t \in I} \) is given for all \(x \in M \), by

\[
v(x) = d_{(0, x)} \phi(\frac{\partial}{\partial t}),
\]

We have

\[
\frac{d}{dt} E_f(\varphi_t) \bigg|_{t=0} = \frac{1}{2} \int_M \left\{ \frac{\partial}{\partial t} f(x, \varphi_t(x)) \right\} |d_x \varphi_t|^2 \bigg|_{(0, x)} \nu_g
\]

\[
= \frac{1}{2} \int_M \left\{ \frac{\partial}{\partial t} f(x, \varphi_t(x)) \right\} |d_x \varphi|^2
\]

\[
+ f(x, \varphi_t(x)) \frac{\partial}{\partial t} |d_x \varphi_t|^2 \bigg|_{(0, x)} \nu_g. \tag{1.4}
\]

First, note that:

\[
\frac{\partial}{\partial t} f(x, \varphi_t(x)) \bigg|_{(0, x)} = \frac{\partial}{\partial t} f(x, \phi(t, x)) \bigg|_{(0, x)} = d_{x, \phi(t, x)} f(0, v(x)) = d_{\varphi(x)} f_x(v(x)),
\]

where \(f_x \) is the smooth function \(y \in N \to f_x(y) = f(x, y) \in (0, +\infty) \). Hence

\[
\frac{1}{2} \frac{\partial}{\partial t} f(x, \varphi_t(x)) \bigg|_{(0, x)} |d_x \varphi|^2 = d_{\varphi(x)} f_x(v(x)) e(\varphi)_x
\]

\[
= h((\text{grad}^N f_x)_\varphi(x), v(x)) e(\varphi)_x
\]

\[
= h(e(\varphi)_x (\text{grad}^N f_x)_\varphi(x), v(x)). \tag{1.5}
\]

Other hand:

Let \(\{ e_i \}_{i=1}^m \) be an orthonormal frame with respect to \(g \) on \(M \), such that \(\nabla_{e_i} e_j = 0 \), at \(x \in M \) for all \(i, j = 1, \ldots, m \). From equality

\[
d_x \varphi_t(e_i) = d_{(t, x)} \phi(0, e_i),
\]
Summing over the index i, we obtain
\[
\frac{1}{2} \frac{\partial}{\partial t} |d_x \varphi_t|^2 \bigg|_{(0,x)} = \frac{1}{2} \frac{\partial}{\partial t} h(d_x \varphi_t(e_i), d_x \varphi_t(e_i)) \bigg|_{(0,x)} \\
= \frac{1}{2} \frac{\partial}{\partial t} h(\phi(0, e_i), d\phi(0, e_i)) \bigg|_{(0,x)} \\
= h(\nabla^\phi \frac{\partial}{\partial t}, d\phi(0, e_i)) \bigg|_{(0,x)} \\
= h(\nabla^\phi_{(0,e_i)} \frac{\partial}{\partial t}, d\phi(0, e_i)) \bigg|_{(0,x)} \\
= (0, e_i)(h(\phi(0, e_i), d\phi(0, e_i))) \bigg|_{(0,x)} \\
= -h(\phi(0, e_i), \nabla^\phi_{(0,e_i)} d\phi(0, e_i)) \bigg|_{(0,x)} \\
= e_i(h(v, d\varphi(0, e_i)))_x - h(v, \tau(\varphi))_x.
\]

Let X be a vector field with compact support on M, such that for any vector field Y on M, we have
\[
g(X, Y) = h(v, d\varphi(Y)),
\]
then
\[
\frac{1}{2} \frac{\partial}{\partial t} |d_x \varphi_t|^2 \bigg|_{(0,x)} = (\text{div} X)_x - h(v, \tau(\varphi))_x.
\]
So :
\[
\frac{1}{2} f(x, \varphi(x)) \frac{\partial}{\partial t} |d_x \varphi_t|^2 \bigg|_{(0,x)} = \left[f_\varphi \text{div} X - h(v, f_\varphi \tau(\varphi)) \right]_x \\
(1.6) = \left[\text{div} (f_\varphi X) - h(v, d\varphi(\text{grad}^M f_\varphi)) - h(v, f_\varphi \tau(\varphi)) \right]_x.
\]
Substituting (1.5) and (1.6) in (1.4), and consider the divergence theorem (see [2]), we obtain
\[
\frac{d}{dt} E_f(\varphi_t) \bigg|_{t=0} = \int_M h(e(\varphi)_x (\text{grad}^N f_\varphi)_x - d\varphi(\text{grad}^M f_\varphi)_x \\
- f(x, \varphi(x)) \tau(\varphi)_x, v(x)) v_y.
\]

Definition 1.2. The field $\tau_f(\varphi)$ defined by :
\[
(1.7) \quad \tau_f(\varphi) = f_\varphi \tau(\varphi) + d\varphi(\text{grad}^M f_\varphi) - e(\varphi)(\text{grad}^N f) \circ \varphi \\
= \text{trace}_g \nabla f_\varphi d\varphi - e(\varphi)(\text{grad}^N f) \circ \varphi.
\]
is called the f-tension field of φ.

From Theorem 1.1, we deduce

Theorem 1.2. Let $\varphi : (M^m, g) \rightarrow (N^n, h)$ be a smooth map. Then φ is f-harmonic, if and only if
\[
\tau_f(\varphi) = f_\varphi \tau(\varphi) + d\varphi(\text{grad}^M f_\varphi) - e(\varphi)(\text{grad}^N f) \circ \varphi = 0.
\]

Particular Cases
(1) If \(f = 1 \), then \(\tau_f(\varphi) = \tau(\varphi) \), is the natural tension field of \(\varphi \) (see [2], [6], [7]).

(2) Let \(f_1 : M \to (0, +\infty) \), be a smooth positiv function. If \(f(x, y) = f_1(x) \) for all \((x, y) \in M \times N \), then \(\tau_f(\varphi) = \tau_{f_1}(\varphi) \), and \(\varphi \) is \(f \)-harmonic map, if and only if, \(\varphi \) is \(f_1 \)-harmonic map (see [5], [10]).

(3) Let \(f_2 : N \to (0, +\infty) \), be a smooth positiv function. If \(f(x, y) = f_2(y) \) for all \((x, y) \in M \times N \), then \(\tau_f(\varphi) = f_2 \circ \varphi \cdot \tilde{\tau}(\varphi) \), where \(\tilde{\tau}(\varphi) \) denote the tension field of \(\varphi \) between the Riemannian manifolds \((M^m, g)\) and \((N^n, \tilde{h})\) equipped with the conform metric \(\tilde{h} = f_2 \cdot h \).

So \(\varphi : (M^m, g) \to (N^n, h) \) is \(f \)-harmonic map if and only if \(\varphi : (M^m, g) \to (N^n, h) \) is harmonic map.

(4) Let \(f_1 : M \to (0, +\infty) \) and \(f_2 : N \to (0, +\infty) \) be smooth positiv functions.

If \(f(x, y) = f_1(x)f_2(y) \) for all \((x, y) \in M \times N \), then

\[
\tau_f(\varphi) = f_2 \circ \varphi \{ f_1 \cdot \tilde{\tau}(\varphi) + d\varphi(\text{grad} M f_1) \}
\]

(5) If \(\varphi : (M^m, g) \to (N^n, h) \) has no critical points (i.e. \(|d_x \varphi| \neq 0 \), then harmonic maps, p-harmonic maps and exponential harmonic maps are \(f \)-harmonic map with \(f = 1 \), \(f = |d\varphi|^p \cdot 2 \) and \(f = \exp(|d\varphi|^2) \) respectively.

(6) If \(\varphi : (M^m, g) \to (N^n, h) \) has no critical points, then any F-harmonic map is \(f \)-harmonic map with \(f = F(|d\varphi|^2) \).

Example 1.1. Let \(M = (\mathbb{R}^*, dx^2) \), \(N = (\mathbb{R}, dy^2) \), \(\varphi : M \to N \) be a smooth function, and let \(f : M \times N \to \mathbb{R}_+ \) be a \(C^2 \) function. From Definition 1.2 (formula (1.7)), we have

\[
\tau_f(\varphi) = \left[f(x, \varphi(x))\varphi''(x) + \frac{\partial f}{\partial x}(x, \varphi(x))\varphi'(x) + \frac{1}{2}\varphi'(x)^2 + \frac{\partial f}{\partial y}(x, \varphi(x)) \right] \frac{d}{dy} \varphi(x).
\]

If \(f(x, y) = e^{x^2} \), by (1.8), \(\varphi \) is harmonic if and only if

\[
\varphi''(x) + \varphi(x)\varphi'(x) + \frac{1}{2}\varphi'(x)^2 = 0.
\]

A local solution of the equation (1.8) is \(\varphi(x) = \frac{x^2}{2} \).

Example 1.2. Let \(\varphi = Id : x \in \mathbb{R}^n \to \varphi(x) = x \in \mathbb{R}^n \), then we have \(\tau(\varphi) = 0 \), \(e(\varphi) = \frac{\partial}{\partial x} \) and from formula (1.7), we obtain :

\[
\tau_f(\varphi) = \left[\frac{\partial f}{\partial x} + (2 - n) \frac{\partial f}{\partial y} \right] \frac{\partial}{\partial x}.
\]

1.2. The second variation of the \(f \)-energy.

Theorem 1.3. Let \(\varphi : (M^m, g) \to (N^n, h) \) be an \(f \)-harmonic map between Riemannian manifolds, and \(\varphi_{t,s} : M \to N \) (\(-\varepsilon < t, s < \varepsilon \)) be a two-parameter variation with compact support, such that \(\varphi_{0,0} = \varphi \). Set

\[
v = \left. \frac{\partial \varphi_{t,s}}{\partial t} \right|_{t,s=0} \quad \text{and} \quad w = \left. \frac{\partial \varphi_{t,s}}{\partial s} \right|_{t,s=0}.
\]

Under the notation above we have the following:

\[
\left. \frac{\partial^2}{\partial t \partial s} E_f(\varphi_{t,s}) \right|_{t,s=0} = \int_M h(J_{\varphi,f}(v), w)v_g,
\]
where
\[
J_{\varphi,f}(v) = -f \cdot \text{trace}_g R^N (v \circ \varphi) d\varphi - \text{trace}_g \nabla^\varphi f \varphi \nabla^\varphi v
\]
(1.9)
\[
+ e(\varphi)(\nabla^N \text{grad}^N f) \circ \varphi - d\varphi(\text{grad}^M v(f)) - v(f) \tau(\varphi) + \langle \nabla^\varphi v, d\varphi \rangle (\nabla^N \text{grad}^N f) \circ \varphi,
\]
and
\[
\text{trace}_g \nabla^\varphi f \varphi \nabla^\varphi v = \sum_{i=1}^{m} \left(\nabla^\varphi_{e_i} f \varphi \nabla^\varphi_{e_i} v - f \varphi \nabla^\varphi \nabla^N_{e_i} e_i \right).
\]
for any orthonormal frame \((e_i)_i\) on \((M, g)\). Here \(\langle , \rangle\) denote the inner product on \(T^*M \otimes \varphi^{-1}TN\) and \(R^N\) is the curvature tensor on \((N, h)\).

Definition 1.3. \(J_{\varphi,f}\) is called the \(f\)-Jacobi operator corresponding to \(\varphi\).

Proof of Theorem 1.3 :

Let \(\phi : (-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times M \longrightarrow N\) is a map defined by
\[
\phi(t, s, x) = \varphi_{t,s}(x),
\]
where \((-\varepsilon, \varepsilon) \times (-\varepsilon, \varepsilon) \times M\) is equipped with the product metric. If we extend the vector fields \(\frac{\partial}{\partial t}\) on \((-\varepsilon, \varepsilon)\) and \(\frac{\partial}{\partial s}\) on \((-\varepsilon, \varepsilon)\), then
\[
v = d\phi\left(\frac{\partial}{\partial t} \right)_{t,s=0} \quad \text{and} \quad w = d\phi\left(\frac{\partial}{\partial s} \right)_{t,s=0}.
\]
Let \(\{e_i\}_{i=1}^m\) be an orthonormal frame with respect to \(g\) on \(M\), such that \(\nabla^M e_i = 0\), at fixed point \(x \in M\) for all \(i, j = 1, ..., m\). We compute
\[
\frac{\partial^2}{\partial t \partial s} E_f(\varphi_{t,s}) = \frac{1}{2} \int_M \frac{\partial^2}{\partial t \partial s} \left[f(x, \varphi_{t,s}(x)) h(d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i)) \right] v_g,
\]
here summing over the index \(i\). We have
\[
\frac{1}{2} \frac{\partial^2}{\partial t \partial s} \left[f(x, \varphi_{t,s}(x)) h(d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i)) \right] =
\]
\[
\frac{1}{2} \frac{\partial^2}{\partial t \partial s} f(x, \varphi_{t,s}(x)) h(d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i))
\]
(1.10)
\[
+ \frac{\partial}{\partial t} f(x, \varphi_{t,s}(x)) h(\nabla^M_{e_i} d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i))
\]
\[
+ f(x, \varphi_{t,s}(x)) h(\nabla^M_{e_i} \nabla^M_{e_i} d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i))
\]
\[
+ f(x, \varphi_{t,s}(x)) h(\nabla^M_{e_i} \nabla^M_{e_i} d\varphi_{t,s}(e_i), \nabla^M_{e_i} d\varphi_{t,s}(e_i)).
\]
Now we calculate each term of right part in the above equation (1.10):
ON THE GENERALIZED OF HARMONIC AND BI-HARMONIC MAPS

1. \[
\frac{\partial^2}{\partial t \partial s} f(x, \varphi_{t,s}(x)) = \frac{\partial}{\partial s} \left[d_{\varphi_{t,s}(x)} I(0, d_{(t,s,x)} \phi(\frac{\partial}{\partial t})) \right] \\
= \frac{\partial}{\partial s} \left[d_{\varphi_{t,s}(x)} f_{x}(d_{(t,s,x)} \phi(\frac{\partial}{\partial t})) \right] \\
= \frac{\partial}{\partial s} \left[h(\nabla^N f_{x}, d_{(t,s,x)} \phi(\frac{\partial}{\partial t})) \right] \\
= h(\nabla^\phi \nabla^N f_{x} \circ \phi, d_{(t,s,x)} \phi(\frac{\partial}{\partial t})) \\
+ h(\nabla^N f_{x} \circ \phi, \nabla^\phi d_{(t,s,x)} \phi(\frac{\partial}{\partial t})),
\] then
\[
1.2 \frac{\partial^2}{\partial t \partial s} f(x, \varphi_{t,s}(x)).h(\nabla^\phi d_{\varphi_{t,s}(x)}, d_{\varphi_{t,s}(x)}) \bigg|_{t=s=0} = \\
h(\nabla^N \nabla^N f_{x}(v) e(\varphi) + h \left((\nabla^N f_{x}(v) \varphi(x), \nabla^\phi d_{\varphi(\frac{\partial}{\partial t})}) \right) \bigg|_{t=s=0} e(\varphi).
\]

2. \[
\frac{\partial}{\partial t} f(x, \varphi_{t,s}(x)).h(\nabla^\phi \phi_{x}, d_{\varphi_{t,s}(x)}, d_{\varphi_{t,s}(x)}) \bigg|_{t=s=0} = \\
h(\nabla^N f_{x} v \phi(\frac{\partial}{\partial s}), d_{\varphi(\frac{\partial}{\partial s})}) \bigg|_{t=s=0} \\
v(f_{x}) \phi(\frac{\partial}{\partial s}), d_{\varphi(\frac{\partial}{\partial s})}) \bigg|_{t=s=0} \\
v(f_{x}) \left(e_{i} (h(w, d_{\varphi(\frac{\partial}{\partial s}))} - h(w, \tau(\varphi)) \right).
\]

If X is the compactly supported vector field on M such for any vector field Y on M: \[g(X, Y) = h(w, d_{\varphi(\phi(Y))} , \] then
\[
\frac{\partial}{\partial t} f(x, \varphi_{t,s}(x)).h(\nabla^\phi \phi_{x}, d_{\varphi_{t,s}(x)}, d_{\varphi_{t,s}(x)}) \bigg|_{t=s=0} = \\
v(f_{x}) \text{div}X - h(w, v(f_{x}) \tau(\varphi)) \\
(1.12) = \text{div}(v(f_{x})X) - h(w, d_{\varphi(\nabla^M v(f_{x}))}) - h(w, v(f_{x}) \tau(\varphi)) \\
(1.12)
\]

3. \[
\frac{\partial}{\partial s} f(x, \varphi_{t,s}(x)).h(\nabla^\phi \phi_{x}, d_{\varphi_{t,s}(x)}, d_{\varphi_{t,s}(x)}) \bigg|_{t=s=0} = \\
h(\nabla^N f_{x}, w), \nabla^\phi v, d_{\varphi} > \\
h(\nabla^\phi v, d_{\varphi} > \nabla^N f_{x}, w),
\]
4.

\[f(x, \varphi_{t,s}(x))h(\nabla^\phi_{t,s} \nabla^\psi_{t,s} d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i)) \bigg|_{t=s=0} \]

\[= f(x, \varphi(x))h(\nabla^\phi_{t} \nabla^\psi_{t} d\varphi_{t,s}(\frac{\partial}{\partial t}), d\varphi(e_i)) \]

\[= f_\varphi h(R^N(d\varphi(\frac{\partial}{\partial s}), d\varphi(e_i))d\varphi(\frac{\partial}{\partial t}), d\varphi(e_i)) + f_\varphi h(\nabla^\phi_{e_i} \nabla^\psi_{e_i} d\varphi_{t,s}(\frac{\partial}{\partial t}), d\varphi(e_i)) \]

\[= -f_\varphi h(R^N(v, d\varphi(e_i))d\varphi(e_i), w) + f_\varphi e_i(h(\nabla^\phi_{e_i} d\varphi_{t,s}(\frac{\partial}{\partial t}), d\varphi(e_i))) \]

\[(1.14) \]

\[-f_\varphi h(\nabla^\phi_{t,s} d\varphi_{t,s}(\frac{\partial}{\partial t}), \tau(\varphi)) \]

let \(X_2 \) be a compactly supported vector field on \(M \) such that

\[g(X_2, Y) = h(\nabla^\phi_{t,s} d\varphi_{t,s}(\frac{\partial}{\partial t}), d\varphi(Y)) \big|_{t=s=0}, \]

for any vector field \(Y \) on \(M \), then the formula (1.14) becomes

\[f(x, \varphi_{t,s}(x))h(\nabla^\phi_{t,s} \nabla^\psi_{t,s} d\varphi_{t,s}(e_i), d\varphi_{t,s}(e_i)) \bigg|_{t=s=0} \]

\[= -f_\varphi h(\text{trace}_g R^N(v, d\varphi)d\varphi, w) \]

\[+ f_\varphi \text{div} X_2 - f_\varphi h(\nabla^\phi_{t,s} d\varphi_{t,s}(\frac{\partial}{\partial t}), \tau(\varphi)) \]

\[= -f_\varphi h(\text{trace}_g R^N(v, d\varphi)d\varphi, w) + \text{div}(f_\varphi X_2) \]

\[- h(\nabla^\phi_{e_i} d\varphi_{t,s}(\frac{\partial}{\partial t}), d\varphi(\text{grad}^M f_\varphi)) \]

\[(1.15) \]

\[-f_\varphi h(\nabla^\phi_{t,s} d\varphi_{t,s}(\frac{\partial}{\partial t}), \tau(\varphi)) \bigg|_{t=s=0} \]

5.

\[f(x, \varphi_{t,s}(x))h(\nabla^\phi_{t,s} d\varphi_{t,s}(e_i), \nabla^\psi_{t,s} d\varphi_{t,s}(e_i)) \bigg|_{t=s=0} \]

\[= f_\varphi h(\nabla^\phi_{e_i} d\varphi_{t,s}(\frac{\partial}{\partial t}), \nabla^\psi_{e_i} d\varphi_{t,s}(\frac{\partial}{\partial t})) \]

\[(1.16) \]

Let \(X_3 \) be a compactly supported vector field on \(M \) such that

\[g(X_3, Y) = h(\nabla^\phi_{e_i} v, w), \]

for any vector field \(Y \) on \(M \), then the formula (1.16) becomes

\[f(x, \varphi_{t,s}(x))h(\nabla^\phi_{t,s} d\varphi_{t,s}(e_i), \nabla^\psi_{t,s} d\varphi_{t,s}(e_i)) \bigg|_{t=s=0} \]

\[= f_\varphi \left[\text{div} X_3 - h(\text{trace}_g(\nabla^\phi)^2 v, w) \right] \]

\[= \text{div}(f_\varphi X_3) - h(\nabla^\phi_{\text{grad}^M f_\varphi} v, w) \]

\[= -h(f_\varphi \text{trace}_g(\nabla^\phi)^2 v, w) \]

\[(1.17) \]

\[= \text{div}(f_\varphi X_3) - h(\text{trace}_g(\nabla^\phi)^2 f_\varphi v, w). \]
Substituting the formulas (1.11), (1.12), (1.13), (1.15) and (1.17) in (1.10), and integrate it, the Theorem 1.3 follows.

2. f-Biharmonic Maps

A natural generalization of f-harmonic maps is given by integrating the square of the norm of the f-tension field. More precisely, the f-bi-energy functional of a smooth map \(\varphi : (M^n, g) \longrightarrow (N^n, h) \) is defined by

\[
E_{2,f}(\varphi) = \frac{1}{2} \int_M |\tau_f(\varphi)|^2 v_g.
\]

A map \(\varphi \) is called f-biharmonic if it is a critical point of the f-energy functional.

2.1. First variation of the f-bi-energy.

Theorem 2.1. Let \(\varphi : (M^n, g) \longrightarrow (N^n, h) \) be a smooth map and let \(\{\varphi_t\}_t \) \((-\varepsilon < t < \varepsilon)\), be a smooth variation of \(\varphi \). Then

\[
\frac{d}{dt} E_{2,f}(\varphi_t) \bigg|_{t=0} = - \int_M h(\tau_{2,f}(\varphi), v) v_g,
\]

where \(v = \frac{\partial \varphi_t}{\partial t} \bigg|_{t=0} \) denotes the variation vector field of \(\{\varphi_t\}_t \).

\[
\tau_{2,f}(\varphi) = -f(\varphi) \text{trace}_g R^N(\tau_f(\varphi), d\varphi) d\varphi - \text{trace}_g \nabla^\varphi f \nabla^\varphi \tau_f(\varphi) + e(\varphi)(\nabla_{\tau_f(\varphi)} \text{grad}^N f) \circ \varphi - d\varphi(\text{grad}^M \tau_f(\varphi) \circ f) - \tau_f(\varphi) f(\tau_f(\varphi)) + \nabla^\varphi \tau_f(\varphi), d\varphi > (\text{grad}^N f) \circ \varphi.
\]

and

\[
\text{trace}_g \nabla^\varphi f \nabla^\varphi \tau_f(\varphi) = \sum_{i=1}^m \left(\nabla_{e_i}^\varphi f \nabla_{e_i}^\varphi \tau_f(\varphi) - f_{\varphi} \nabla_{e_i}^\varphi \tau_f(\varphi) \right).
\]

for any orthonormal frame \(\{e_i\}_i \) on \((M, g)\)

Definition 2.1. \(\tau_{2,f}(\varphi) \) is called the f-bi-tension field of \(\varphi \).

Proof of Theorem 2.1 :

Let \(\phi : (-\varepsilon, \varepsilon) \times M \longrightarrow N \) be defined by \(\phi(t, x) = \varphi_t(x) \), where \((-\varepsilon, \varepsilon) \times M \) is equipped with the product metric. We extend the vector fields \(\frac{\partial \phi}{\partial t}\) naturally on \((-\varepsilon, \varepsilon) \times M\), then

\[
\frac{d}{dt} E_{2,f}(\varphi_t) = \int_M h(\nabla_{\frac{\partial \phi}{\partial t}}^\phi \tau_f(\varphi_t), \tau_f(\varphi_t)) v_g,
\]

choose a local orthonormal frame \(\{e_i\}_{1 \leq i \leq m} \) such that \(\nabla_{e_i} e_j = 0 \) for all \(i, j = 1, ..., m \) at a fixed point \(x \in M \), then by (1.7) we have

\[
\nabla_{e_i}^\phi \tau_f(\varphi_t) = \nabla_{e_i}^\phi \nabla_{e_i}^\varphi f \varphi_t(e_i) - \nabla_{e_i}^\phi e(\varphi_t)(\text{grad}^N f) \circ \varphi_t,
\]

First, from formula of curvature tensor, we obtain

\[
\nabla_{e_i}^\phi \nabla_{e_i}^\varphi f \varphi_t(e_i) = R^N(\phi_\varphi(\frac{\partial}{\partial t}), \phi(e_i)) f_{\varphi} d\varphi_t(e_i)
\]

\[
\nabla_{e_i}^\phi \nabla_{e_i}^\varphi f \varphi_t(e_i) = R^N(\phi_{\partial t}(\frac{\partial}{\partial t}), \phi(e_i)) f_{\varphi} d\varphi_t(e_i)
\]

(2.2)
We have
\[h(\nabla^\phi_{\phi_1} \nabla^\phi_{\phi_1} f, d\varphi_1(e_1), \tau_f(\varphi_i)) = e_i(h(\nabla^\phi_{\phi_1} f, d\varphi_1(e_1), \tau_f(\varphi_i))) \]
\[-h(\nabla^\phi_{\phi_1} f, d\varphi_1(e_1), \nabla^\phi_{\phi} \tau_f(\varphi_i))) \]
\[= e_i(h(\nabla^\phi_{\phi_1} f, d\varphi_1(e_1), \tau_f(\varphi_i))) \]
\[-\partial h(e_i, d\varphi_1(e_1), \nabla^\phi_{\phi} \tau_f(\varphi_i))) \]
\[-f, h(\nabla^\phi_{\phi_1} d\varphi_1(e_1), \nabla^\phi_{\phi} \tau_f(\varphi_i))). \]

let \(X \) be the compactly supported vector field on \(M \) such that
\[g(X, Y) = h(\nabla^\phi_{\phi} f, d\varphi_1(Y), \tau_f(\varphi_i)) \bigg|_{t=0}, \quad \forall Y \in \Gamma(TM), \]
then
\[h(\nabla^\phi_{\phi_1} \nabla^\phi_{\phi_1} f, d\varphi_1(e_1), \tau_f(\varphi_i)) \bigg|_{t=0} = \]
\[\text{div} X - h(\text{grad} f, v), < d\varphi, \nabla^\phi \tau_f(\varphi) > \]
\[-f, h(\nabla^\phi_{\phi_1} d\varphi_1(e_1), \nabla^\phi_{\phi} \tau_f(\varphi))) \bigg|_{t=0} \]
\[= \text{div} X - h(\text{grad} f, v), < d\varphi, \nabla^\phi \tau_f(\varphi) > \]
\[-f, e_i(h(v, \nabla^\phi \tau_f(\varphi))) - h(v, \nabla^\phi_{\phi} \tau_f(\varphi))) \bigg| \]
\[= \text{div} X - h(\text{grad} f, v), < d\varphi, \nabla^\phi \tau_f(\varphi) > \]
\[-f, e_i \left(\text{div} X_2 - h(v, \text{trace}_g(\nabla^\phi)^2 \tau_f(\varphi)) \right) \]
\[= \text{div} X - h(\text{grad} f, v), < d\varphi, \nabla^\phi \tau_f(\varphi) > \]
\[-f, e_i \left(\text{div} X_2 - h(v, \text{trace}_g(\nabla^\phi)^2 \tau_f(\varphi)) \right) \]
\[\bigg(2.3\bigg) \]

where \(X_2 \) is the compactly supported vector field on \(M \) such that
\[g(X_2, Y) = h(v, \nabla^\phi \tau_f(\varphi)), \quad \forall Y \in \Gamma(TM), \]
By the formulas (2.2) and (2.3), we have
\[h(\nabla^\phi_{\phi_1} \nabla^\phi_{\phi_1} f, d\varphi_1(e_1), \tau_f(\varphi_i)) \bigg|_{t=0} = \]
\[h(f, \text{trace}_g R^N(\tau_f(\varphi), d\varphi), d\varphi) \]
\[+ \text{div} X - h(< d\varphi, \nabla^\phi \tau_f(\varphi) > . \text{grad} f, v) \]
\[-\text{div}(f, X_2) + h(v, \nabla^\phi_{\text{grad}^N f} \tau_f(\varphi)) \]
\[+ h(v, f, \text{trace}_g(\nabla^\phi)^2 \tau_f(\varphi)) \]
\[= h(f, \text{trace}_g R^N(\tau_f(\varphi), d\varphi), d\varphi) \]
\[+ \text{div} X - h(< d\varphi, \nabla^\phi \tau_f(\varphi) > . \text{grad} f, v) \]
\[-\text{div}(f, X_2) + h(f, \text{trace}_g(\nabla^\phi)^2 \tau_f(\varphi), v). \]
\[\bigg(2.4\bigg) \]
On the other hand, we have
\[\bigg(2.5\bigg) \]
\[\nabla^\phi_{\phi} e(\varphi_i)(\text{grad} f) \circ \phi = \frac{\partial e(\varphi_i)}{\partial t}(\text{grad} f) \circ \phi + e(\varphi_i) \nabla^\phi_{\phi} (\text{grad} f) \circ \phi, \]
since
\[
\frac{\partial \phi(\varphi_t)}{\partial t} \bigg|_{t=0} = h(\nabla^\phi_{\varphi_t} \phi, d\phi(\varphi_t)) \bigg|_{t=0} = h(\nabla^\phi_{\varphi_t} \phi, d\phi(\varphi_t)) \bigg|_{t=0}
\]
\[
= h(\nabla^\phi_{\varphi_t} \phi, d\phi(\varphi_t)) \bigg|_{t=0}
\]
\[
= e_t(h(v, d\phi(e_t))) - h(v, \tau(\varphi)).
\]
\[(2.6)
\]
where \(X_3\) is the compactly supported vector field on \(M\) such that
\[
g(X_3, Y) = h(v, d\phi(Y)), \quad \forall Y \in \Gamma(TM).
\]

By the formulas (2.5) and (2.6), we obtain
\[
\begin{align*}
&h(\nabla^\phi_{\varphi_t} \phi, (\text{grad}^M f) \circ \phi, \tau(\varphi)) \bigg|_{t=0} \\
&= \tau(\varphi)(\varphi) \circ \phi, \tau(\varphi) \bigg|_{t=0} \\
&= h(\nabla^\phi_{\varphi_t} \phi, (\text{grad}^M f) \circ \phi, \tau(\varphi)) \\
&= \text{div}(\tau(\varphi)(\varphi) \circ \phi) - h(v, d\phi(\tau(\varphi)(\varphi))) \\
&= \text{div}(\tau(\varphi)(\varphi) \circ \phi) + e(\phi)h(\nabla^\phi_{\varphi_t} \phi, \text{grad}^M f, v)
\end{align*}
\]
\[(2.7)
\]
Substituting the formulas (2.4) and (2.7) in (2.1), the Theorem 2.1 follows.

From Theorem 2.1, we deduce

Theorem 2.2. Let \(\varphi : (M^m, g) \rightarrow (N^n, h)\) be a smooth map. Then \(\varphi\) is \(f\)-biharmonic if and only if we have:

\[
\tau_{2.f}(\varphi) = -f \text{trace} \nabla^N \tau_f(\varphi), d\phi - \text{trace} \nabla^\varphi \tau_f(\varphi) + e(\phi)(\text{grad}^M \tau_f(\varphi)(\varphi)) - \tau_f(\varphi)(\varphi) \circ \phi - d\phi(\text{grad}^M \tau_f(\varphi)(\varphi))< \nabla^\varphi \tau_f(\varphi), d\phi > (\text{grad}^M f) \circ \phi.
\]

\[
= 0
\]

Particular Cases

1. If \(f = 1\), then \(\tau_{2.f}(\varphi) = \tau(\varphi)\), is the natural bi-tension field of \(\varphi\) (see [11], [12]).
2. Let \(f_1 : M \rightarrow (0, +\infty)\), be a smooth positive function. If \(f(x, y) = f_1(x)\) for all \((x, y) \in M \times N\), then \(\tau_{2.f}(\varphi) = \tau_{2.f_1}(\varphi)\), and \(\varphi\) is \(f_1\)-biharmonic map, if and only if, \(\varphi\) is \(f_1\)-biharmonic map (see [10]).
3. Let \(f_2 : N \rightarrow (0, +\infty)\), be a smooth positive function. If \(f(x, y) = f_2(y)\) for all \((x, y) \in M \times N\), then \(\varphi : (M^m, g) \rightarrow (N^n, h)\) is \(f_2\)-biharmonic map if and only if \(\varphi : (M^m, g) \rightarrow (N^n, h)\) is bi-harmonic map, where \((N^n, h)\) equipped with the conform metric \(\tilde{h} = f_2 h\) (see [11]).

References

M. DJAA, DEPARTMENT OF MATHEMATICS UNIVERSITY OF RELIZANE, BORMADIA 48000, ALGERIA
E-mail address: Lgaca_Saida2009@hotmail.com

A.M. CHERIF, GEOMETRY ANALYSIS CONTROLE AND APPLICATIONS LABORATORY, BP 138, UNIVERSITY OF SAIDA, BP 138, ALGERIA
E-mail address: med.cherif.ahmed@yahoo.fr

KADDOUR ZEGGA, GEOMETRY ANALYSIS CONTROLE AND APPLICATIONS LABORATORY, UNIVERSITY OF SAIDA, BP 138, ALGERIA
E-mail address: zegga.kaddour@yahoo.fr

S. OUAKKAS, GEOMETRY ANALYSIS CONTROLE AND APPLICATIONS LABORATORY, UNIVERSITY OF SAIDA, BP 138, ALGERIA
E-mail address: souakkas@yahoo.fr