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ABSTRACT

In this paper, we establish a link between a “curvature inheritance symmetry" of a semi-Riemannian
manifold and a class of almost Ricci solitons(ARS). In support of this link we present three
mathematical models of conformally flat ARS-manifolds. As an application to relativity, by
investigating the kinematic and dynamic properties of ARS-spacetimes we present a physical
model of three classes (namely, shrinking, steady and expanding) of perfect fluid solutions
for ARS-spacetimes and prove the existence of a family of totally umbilical ARS Einstein
hypersurfaces of a GRW-spacetime. Finally, we propose two open problems for further study.
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1. Introduction

In 1982 Hamilton [15] introduced the concept of Ricci flow geometric evolution equation in which one starts
with a smooth n-dimensional Riemannian manifold (M, g(0)) that evolves its metric by the following equation

∂gij
∂t

= −2Rij (i, j = 1, · · · , n), (1.1)

where Rij is the Ricci tensor of the metric gij . Suppose (M, g(t)) is a solution of the Ricci flow equation (1.1) on
a time interval (α, ω) including g(0). Then, we say that g(t) is a “Ricci soliton" if there exist scalars φ(t) and a
1-parameter family of diffeomorphisms ψ(t) : M →M such that

g(t) = φ(t)ψ(t)∗g(0), (1.2)

where φ′(t) = −2λ for a constant λ for all t ∈ (α, ω). Differentiating (1.2) with respect to t and using (1.1) we get
the following Ricci soliton evolution equation

£V gij = 2λgij − 2Rij . (1.3)

where V is a vector field of M . For details on above equation, see [6, Lemma 2.4, page 23]. A solution of (1.3)
addresses the following fundamental question:

If g(0) is a complete locally homogeneous metric, how will g(t) evolve?

To deal with above question, Hamilton introduced three special classes of Ricci soliton solutions, namely,
shrinking (λ > 0) that which exists on a maximal time interval −∞ < t < ω where ω <∞, steady (λ = 0) that
which exists for all time or expanding (λ < 0) that which exists on maximal time interval α < t <∞ where
α > −∞. These classes yield examples of ancient, eternal and immortal solutions, respectively. Warped products
provide examples of solitons, such as the well-known eternal solution of the cigar metric which is defined
on the plane by g(t) = dx2+dy2

e4t+x2+y2 whose scalar curvature r = 4
1+x2+y2 = 4sech2s, where s is the distance to the

origin. This metric is conformal to the Euclidean metric, positively curved, asymptotic to a cylinder and r
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decays exponentially fast. Physicists know this example as Witten’s black hole cited in [26]. Actually, in the
physics literature, Ricci solitons were first introduced as quasi-Einstein metrics. The shrinking round sphere
is the ancient solution of the Ricci flow. Also, for t > 0, an expanding immortal solution is a smooth complete
metric on R2 with positive curvature that decays exponentially with respect to the distance from the origin.
These and other special examples of above three classes are discussed in [6, Chapter 2]. If V is the gradient of
a smooth function f , one can replace V by ∇f and then (M, g, λ, V ) is called a gradient Ricci soliton manifold
for which the evolution equation (1.3) assumes the form.

∇i∇jf +Rij = λgij . (1.4)

Again, cigar solution is the unique rotationally symmetric gradient Ricci soliton eternal solution. Hamilton’s
work has been used in resolving many longstanding open problems in Riemannian geometry and 3-
dimensional topology. Basic details on this area of research are available in Chow-Knopf [6] and Cao et al. [7]
and more cited therein. There are few papers on Ricci solitons for semi-Riemannian (in particular, Lorentzian)
manifolds (for example, see Crasmareanu [8], Brozos-Vázquez et al.[5], Duggal [11] and Onda [21].
Recently, Pigola et al.[23] introduced a modified class of the Ricci soliton(RS) evolution equation (1.3) by
replacing the soliton constant λ with a variable function Φ and then (M, g,Φ, V )) is called an “almost Ricci
soliton" manifold, which we denote by ARS-manifold and V the “almost Ricci soliton vector", briefly denoted by
ARS vector such that the evolution equation (1.3) becomes

£V gij = 2Φgij − 2Rij . (1.5)

For the ARS solution of Ricci flow we consider

g(t) = φ(t, xa)ψ(t)∗g(0), (1.6)

where ψ(t) are diffeomorphisms of M generated by a family of vector fields X(t) and φ(t, xa) are point wise
scaling functions depending on all the coordinates (t, xa) of points with the initial condition: gij(0) = gij ,
ψ(0) = I → φ(t, xa) = 1. Differentiating (1.6) with respect to t and using the Ricci flow equation (1.1) we get(

∂

∂t
φ(t, xa)

)
|t=0

gij + £X(0)gij = −2Rij . (1.7)

LabellingX(0) = V and
(
∂
∂tφ(t, xa)

)
|t=0

= −2Φ we get the almost Ricci soliton evolution equation (1.5). Just like
the case of Ricci solitons, the almost Ricci soliton solution is shrinking (ancient), steady (eternal) or expanding
(immortal) according as Φ is positive, zero, or negative, respectively. We say that an ARS-manifold is shrinking
(ancient), steady (eternal) or expanding (immortal), in the same order. For an example of an ARS-manifold we
refer Barros-Riberiro [4]. If V is the gradient of a smooth function f , we replace V by ∇f . Then, (M, g,Φ, V )
is called a gradient ARS-manifold for which the evolution equation (1.4) holds if we replace λ by Φ. Barros et
al.[2] have proved that if n > 2 and the scalar curvature is constant, then (M, g) is isomorphic to a Euclidean
sphere and ARS-manifold is gradient. For an ARS-manifold (M, g,Φ, V ), with dim(M) > 2, and V homothetic, g
is Einstein and therefore Φ = λ so ARS-manifold is Ricci soliton(RS). Also, for an ARS-manifold the vector V is
conformal if and only if g is Einstein. So far we know following references on ARS-manifolds: Pigola et al.[23],
Barros et al.[2], Barros-Riberiro [4], Sharma [24], Wang [25], Duggal [11] and some more referred therein.
In this paper, we let (M, g, V,Φ) be an almost Ricci soliton(ARS) semi-Riemannian manifold for which the
evolution equation (1.5) holds. Modified theory of ARS-manifolds has just started which has wide open
questions of finding examples of ARS-solutions and an analysis on the existence of their three classes
(shrinking, steady, and expanding) for Riemannian and semi-Riemannian manifolds. Motivated by this scope
of research, in Section 2 we first give a short review on a “curvature symmetry" of a semi-Riemannian
manifold and then design two mathematical models which link this symmetry with a class of ARS-manifolds
(M, g, V,Φ). Also, we show that there exists a third model of non-Einstein conformally recurrent RS-manifolds.
Furthermore, we study a special case when (M, g, V ) is conformally flat steady Einstein RS-manifold,
supported by a specific example. As an application, in Section 3, we have made some progress in presenting
a physical model of perfect fluid ARS-spacetimes which also admit a curvature symmetry for all three classes
of ARS-solutions. Then, we prove the existence of a family of ARS Einstein hypersurfaces of a generalized
Robertson-Walker(GRW) spacetime introduced by Alias et al.[3] and propose two open problems.
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2. Mathematical models of ARS-manifolds

Recall that in 1993 Duggal[10] introduced a general concept of symmetry inheritance on a semi-Riemannian
manifold (M, g), corresponding to a vector field V, if £V Ω = αΩ for some scalar field α, where Ω is any
geometric/physical quantity. Well-known example is the case when Ω = g for which V is a conformal Killing
Vector(CKV) and, in particular, a homothetic vector (HV) or a Killing Vector (KV) according as α is a non-zero
constant or zero, respectively. Another case comes from some problems when a semi-Riemannian manifold has
not only a Levi-Civita connection∇ but also a volume form ω and one needs conditions for their compatibility.
For a specific example, we know that the divergence of a vector field V is given by ∇ · V and the volume form
divergence is given by

£V ω = (divωV )ω.

Then,∇ and ω are compatible if divω = ∇ · V and ω inherits a symmetry defined by above equation with respect
to the vector field V.
Since the metric and curvature symmetries play important role in mathematics and physics (see Duggal-
Sharma[12]), in this paper we prescribe Ω = Rijkm the curvature tensor of (M, g) admitting a curvature
inheritance(CI)symmetry satisfying

£V R
i
jkm = 2αRi jkm. (2.1)

Denote V by a curvature inheritance vector (CIV) field. A CI reduces to a well-known and extensively studied
symmetry called curvature collineation (CC) when α = 0 . This third order system in the metric gij means that
the Levi-Civita connection ∇ is a Yang-Mills connection while keeping g on M fixed. For example, Derdzinski
[9] constructed such a metric on S1 ×N for any N carrying the Einstein metric with positive scalar curvature,
such that the Ricci tensor is not parallel and the metric is conformally flat. Contracting (2.1) implies

£V Rij = 2αRij , (2.2)

where Rij is the Ricci tensor of M for which we denote V by Ricci inheritance vector (RIV) field. RI reduces
to Ricci collineation (RC) when α = 0. Details on above brief is available in Katzin et al.[16]), Duggal[10, 11],
Chapter 8 of Duggal-Sharma[12] and more referred therein. In general, we set

£V gij = Vi ; j + Vj ; i = Pij . (2.3)

For a CIV vector V , using (2.1)- (2.3) the following identities will hold:

(a) £V R
i
j = 2αRij −Rkj P ik, (b) £V r = 2α r − r′ , r′ ≡ RijP

j
i . (2.4)

Equation (2.3) raises the question of finding possible values for the tensor Pij which represents the change
in g, with respect a CIV field V . For this purpose, we recall that any curvature tensor satisfies the identity:
gijR

i
kme + gikR

i
jme = 0. Taking Lie derivative of this identity with respect to V, using (2.1) and (2.3) we state

Proposition 2.1. A necessary condition for a vector V to be a CI vector is that the following curvature identity holds:

PijR
i
kme + PikR

i
jme = 0. (2.5)

We highlight that since the necessary condition (2.5) for a CI vector V is independent of the function α it
is same for any curvature collineation(CC) vector field for which £VR

i
jkm = 0 holds. Later on reader will see

that above curvature symmetry is the same for a special case of another symmetry, called conformal collineation
symmetry [11]. Moreover, in general, this curvature symmetry places no restriction on any specific type of
symmetry vector. Let the general solution of above curvature identity be given by

£V gij = 2 Φ gij +Kij , (2.6)

where Kij is a second order symmetric tensor and Φ is a function on M . Then, a particular possibility of (2.6),
with prescription Kij = −2Rij , provides a link between the CI symmetry of a semi-Riemannian manifold and
a class of almost Ricci solitons(ARS) manifolds (M, g, V,Φ). In support of this link we quote following three
results which establish the existence of mathematical models of ARS-manifolds having a symmetry vector V
that satisfies the curvature identity (2.5).
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Model 1. Katzin et al.[17] has proved that the necessary condition for a non-Einstein conformally flat
manifold (M, g, V ) to admit a Curvature collineation(CC) vector field V is that

£V gij = 2Φgij + ΩRij , Ω = nonzero function on M ,

where Φ is a function on M . Thus, for Ω = −2 above equation represent the ARS evolution equation (1.5) so
(M, g,Φ, V ) is a mathematical model of conformally flat ARS-manifolds satisfying the curvature identity (2.5).

Model 2. Recall that an n dimensional semi-Romannian manifold (M, g, V ) admits a “conformal collineation"
symmetry [11] defined by a vector field V if

£V Γkij = δki Ψj + δkj Ψi − ḡij Ψk,

where Γkij denotes the Christoffel’s symbols, Ψ is a function and Ψj = ∂j (Ψ). V is then called an “Affine
Conformal Vector"(ACV) field of M for which the equation (2.6) holds such that Kij is a covariant constant
(∇̄K = 0) symmetric tensor field. An ACV reduces to a “conformal Killing vector", briefly denoted by CKV,
if K is proportional to g. Thus, an ACV deviates from a CKV field if there exists a second order covariant
constant symmetric tensor K 6= g. We know that (M, g) is Ricci symmetric if ∇XRic(Y,Z) = 0,∀X,Y, Z ∈ TM .
Levine-Katzin[18] have proved that if a conformally flat manifold (M, g,Φ, V ) admits a conformal collineation
symmetry, with CKV vector field V, then,Kij = agij + bRij for some constants a and b andM is Ricci symmetric.
Thus, for a = 0 and b = −2 we recover the evolution equation (1.5). Therefore, (M, g,Φ, V ) is a mathematical
model of Ricci symmetric ARS-manifolds. See details on this model in a recent paper by Duggal[11]. Now we
show that a special case of conformal collineation symmetry admits curvature identity (2.5). Indeed, In general,
an ACV vector field V admits following curvature identities (proof is similar to curvature identities on CKV
[27]).

£VR
m
ijk = δmi Φk;j + δmj Φi;k + Φm;i ḡjk + Φm;j ḡik,

£VRij = div(gradΦ)ḡij − (n− 1)Φ;ij ,

£V r = 2ndiv(gradΦ)− 2 Φr + 2r.

If Φ = λ a constant then above identities reduces to

£VR
m
ijk = 0 = £VRij , £V r = 2(1− λ)r.

It follows from above equation that for Φ = λ the conformal collineation symmetry is also a CC symmetry
which is a subcase of CI symmetry. Therefore, this model also satisfies the curvature identity (2.5) linked with
CC symmetry.

Model 3. Grycak[13] has proved that a non-Einstein conformally recurrent manifold (i.e., ∇C = dθ ⊗ C,
where C is the conformal curvature tensor and dθ is an exact recurrent form) which is neither conformally
flat nor recurrent, admits a vector field V satisfying the equation (2.6) such that

£V gij = 2λgij + ΩRij , Ω = nonzero function on M

and λ is a constant. This relates with the Ricci soliton equation (1.3) if we take Ω = −2 so (M, g, λ, V ) is a model
of RS-manifolds. Although Grycak did not discuss any link of his result with a symmetry vector, but, since
above relation is a particular case of general solution of the curvature identity (2.5) it is reasonable to assume
that this model also has a link with CI symmetry or one of its subcase. For information on conformally recurrent
manifolds, we refer Adati-Miyazawa[1].
Although we have three models with specific prescriptions for the unknown tensor K linking with ARS vector
field V, it is reasonable to assume that such a link may also hold for a variety of other types of semi-Riemannian
manifolds. For this reason, we state following general result to initiate research on deeper study of possible
solutions of the curvature identity (2.5):

Theorem 2.1. Let (M, g, V ) be an n-dimensional semi-Riemannian manifold admitting the curvature identity (2.5) with
respect to a field V whose general solution is given by the equation (2.6) such that its tensor field Kij = −2Rij . Then, V
is also an ARS vector field. Therefore, (M, g,Φ, V ) is an ARS-manifold.
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2.1. ARS-Einstein manifolds

In this subsection we study another possibility of the general solution (2.6) of the CI curvature identity by
setting Pij = 2σgij for which V is a conformal Killing vector(CKV). For this case, we know from Yano [27] that
following identities hold:

(a) £V Rij = −(n− 2)σ;ij −4σ gij , (b) £V r = −2σr − 2(n− 1) 4 σ, (2.7)

where4σ = div (grad σ). By comparing (2.2),(2.4)a with (2.7)a and then using (2.7)b we obtain

(a) σ;ij =
α

n− 2

( r

n− 1
gij − 2Rij

)
, (b) 4 σ +

αr

(n− 1)
= 0. (2.8)

Therefore, for £V gij = 2σgij , (2.7) reduces to

(a) £V Rij = −(n− 2)σ;ij +
αr

(n− 1)
gij , (b) £V r = 2(α− σ)r. (2.9)

Proposition 2.2. Under the hypothesis of Theorem 2.1 , if the ARS-manifold (M, g, V,Φ) is Einstein (n > 2) (Rij =
r
ngij , r 6= 0), then, V is CKV with conformal function Φ = α+ r

n and M is conformally flat. If α = 0, then, (M, g, V ) is
steady (£V g = 0) RS-Einstein manifold.

Proof. Substituting Rij = r
ngij in the evolution equation (1.5) and using (2.2) with r constant we get

(a) £V gij = 2αgij , (b) £V gij = 2(Φ− r

n
)gij . (2.10)

Therefore, V is CKV with conformal function Φ = α+ r
n and we know from Yano[27] that M is conformally

flat (£V Cijkm = 0) where Cijkm is its conformal curvature tensor. If α = 0, then from (2.10) we get £V gij = 0 and
Φ = r

n is constant. Thus, (M, g, V ) is a steady RS-Einstein manifold which completes the proof.

For this case we have following example: Let (M, g, V ) be an ARS-Einstein manifold (Rij = r
n gij , n > 2) with

CKV field V and conformal function Φ = α+ r
n . Then, since r is constant we have Φ;ij = α;ij . TakingRij = r

n gij
in (2.8)b and σ = α for r constant, we get

α ;ij = ρ gij , ρ ≡ − r α
n(n− 1)

.

Petrov [22] has quoted a result of Sinyukov (1957) that if M admits a vector field αi satisfying above for a
nonzero scalar function ρ, then a system of coordinates exists in which the metric takes the form

ds2 = g11 (dx1)2 + (g11)−1Apq (x2, . . . , xn) dxp dxq,

where p, q 6= 1 , g11 = [ 2
∫
ρ dx1 + c ]−1 and p = p(x1). Thus, this example of M with above metric will hold

for the Proposition 2.3.

3. Physical applications

In support of Theorem 2.1, we discuss some physical applications of a class of ARS-spacetimes of relativity.
We first examine how the Einstein field equations have effect on the evolution equation (1.5) of an ARS-
spacetime. Let

Gij ≡ Rij −
1

2
r gij = Tij , r = −T ii (3.1)

be the Einstein field equations where Gij is the Einstein tensor. Suppose (M, g, V ) is an ARS-spacetime which
satisfies the hypothesis of Theorems 2.1 and admits above Einstein equations. The invariance(£VG = 0) of G
is physically desirable since that amounts to invariance of matter tensor T , useful in finding exact solutions.
For example, we know that if a spacetime admits a Killing or homothetic symmetry vector V , then, V leaves
G invariant but this invariance property is not obvious for any arbitrary symmetry vector field. An example is
the non-invariant conformal Killing vector field (CKV) symmetry. However, we also know that the physically
important Robertson-Walker spacetimes do admit nine proper CKV’s and six Killing vectors(see, Maartens-
Maharaj [19]) and the metric is conformally flat. Here we show that non-Einstein ARS vector field symmetry
is also non-invariant but do provides some possible perfect fluid solutions (see Theorem 3.2). With this
understanding, we now find condition(s) when £VG = 0 holds with respect to an ARS symmetry vector field
V.
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Proposition 3.1. Let (M, g, V ) be an n-dimensional ARS-spacetime (n > 2) which admits an ARS-vector field V
satisfying Theorem 2.1 and the Einstein field equations (3.1). If V leaves G invariant (£VG = 0), then, α vanishes
and (M, g, V ) is conformally flat steady Einstein RS-spacetime.

Proof. Operating £V to both sides of the field equations, using (1.5) and £V Tij = 0 we obtain £VGij = 2αRij −
1
2 £V rgij − r(Φgij −Rij) = 0. Therefore, (2α+ r)Rij = ( 1

2 £V r + rΦ)gij so M is Einstein. Now r constant
implies that £V r = 0 so Rij = r

2α+rΦgij . Also, we know that M Einstein implies Rij = r
ngij . Comparing these

two results we get nΦ = 2α+ r. Also, we know from Proposition 2.3 that nΦ = nα+ r. Since n > 2, the only
possibility is that α vanishes and (M, g, V ) is conformally flat steady Einstein RS-spacetime which completes
the proof.

Thus, we conclude that non-Einstein ARS vector field V does not leave G invariant. However, just like the
case of proper CKV symmetry we now state and prove a physical model of a perfect fluid ARS-spacetime
(M, g,Φ, V ). For this we need following kinematic properties of ARS-spacetimes.
Set £

V
Xi = φXi + Y i, for some function φ and non-null unit vector Xi and Y i where Y iXi = 0 of M .

Contracting this with Xi and then using £
V
Xi = £

V
gijX

i),£
V

(XiX
i) = 0 and the evolution equation (1.5)

we obtain
φ = −εXi(2ΦXi − 2RijX

j + gij£VX
j).

Therefore, φXi = −2(Φ + εRijX
iXj)−£VX

i. Substituting this value of φXi in £
V
Xi = φXi + Y i we get

(a) £
V
Xi = −(Φ + εRjkX

jXk)Xi + Y i/2,

(b) £
V
Xi = (Φ− εRjkXjXk)Xi − 2RijX

i + Yi/2. (3.2)

The set of all integral curves given by a unit non-null or null vector field is called the congruence of non-null
or null curves. In this paper, we consider timelike curves, also called flow lines, for which we denote u a unit
timelike vector field. For the cases of spacelike and null curves, we refer [12, Chapter 4, pages 57-60]. The
acceleration of the flow lines along u is given by ∇uu. The projection tensor hij = gij + uiuj is used to project a
tangent vector at a point p inM into a spacelike vector orthogonal to u at p. The rate of change of the separation
of flow lines from a timelike curve tangent to u is the expansion tensor θij = hki h

m
j u(k ;m). The expansion θ, the

shear tensor σij , the vorticity tensor ωij and the vorticity vector ωi are, respectively,

θ = div u = θijh
ij , σij = θij −

θ

n− 1
hij ,

ωij = hki h
m
j u[k;m], ωi =

1

2
ηijkmujωkm,

where ηijkm is the Levi-Civita volume-form. The covariant derivative of u satisfies

ua;b = ωab + σab +
θ

n− 1
hab − ub(uc;auc). (3.3)

The rate at which the expansion θ changes along u (with respect to an arc-length parameter s) is given by the
Raychaudhuri equation:

uθ =
dθ

ds
= −Rijuiuj + 2ω2 − 2σ2 − θ2

n− 1
+ div(∇uu), (3.4)

where ω2 = 1
2ωijω

ij and σ2 = 1
2σijσ

ij

Theorem 3.1. Let (M, g,Φ, V ) be an n-dimensional ARS-spacetime (n > 2) with an ARS-vector field V satisfying
Theorem 2.1. Suppose V is parallel to the velocity vector u and (M, g) admits following perfect fluid Einstein field
equations

Rij −
1

2
rgij = Tij = (µ+ p)uiuj + pgij . (3.5)

with µ, p the density and pressure, respectively. Then,

(a) (µ+ 3p) = 2(β̇ − Φ), where V = βu and β = −uiV i > 0 is a function. Thus there exists a variety of physically
valid solutions for the ARS-spacetimes if and only if β̇ > Φ.
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(b) For each negative Φ at a point p of the fluid flow there exists a family of expanding ARS-spacetimes for any
magnitudes of V.

(c) For each positive Φ at a point p of the fluid flow the corresponding spacetimes are shrinking if β̇ > Φ.
(d) If Φ = 0 then, there exists a variety of physically valid steady solutions of the ARS-spacetimes for any non-constant

magnitude of V.

Proof. Using r = −T ii = µ− 3p in (3.5) we get Rijuiuj = µ+3p
2 . Set in (3.2) Xi = ui the unit timelike (ε = −1)

velocity vector. Then, we obtain

(a) £
V
ui = −(Φ +Rjku

juk)ui + Y i/2,

(b) £
V
ui = (Φ−Rjkujuk)ui − 2Riju

i + Yi/2. (3.6)

In general, let V i = βui + νi where β = −uiV i and νiui = 0. Then, using (3.3) (see details given in [20]) we
obtain £

V
ui = β̇ui + β

(
u̇i + (lnβ−1);jh

j
i

)
+ νj u̇jui + 2ωijν

j . Using this along with the equation (3.6)b and

contracting with ui and hik = gik + uiuk we get

(a) Φ = β̇ + u̇iV
i −Rijuiuj ,

(b) Yi = 2ωijV
i + β

(
u̇i + (lnβ−1);jh

j
i

)
+ 2Rjku

jhki . (3.7)

Since ARS-vector V is timelike and parallel to u we have V = βu. Thus, V maps flow lines into flow lines so
Y i = 0. Putting Y i = 0 in (3.6)a and then using (3.7)a we get (µ+ 3p) = 2(β̇ − Φ). Now for any physically valid
fluid solution the energy conditions demand that µ+ 3p > 0. Also, β̇ > 0. Therefore, (a) holds. The cases (b)
and (c) follow from (a) and the definition of expanding or shrinking solitons, respectively. For the case (d), if
Φ = 0 then, (µ+ 3p) = 2β̇ is positive for any non-constant magnitude of V, which completes the proof.

Remark 3.1. Recall that a material curve in a fluid is a curve whose fluid particles move along the curve as the
fluid evolves. Material curves play an important role in relativistic fluids. In our case, the timelike fluid flow
curves are material curves as V maps flow lines into flow lines.

3.1. ARS Einstein hypersurfaces of GRW-spacetimes

Suppose (M̄, ḡ) is a (1 + n)-dimensional Lorentzian manifold whose metric ḡ satisfies the following
kinematic condition

∇̄X̄u = f
(
X̄ + ḡ(X̄, u)u

)
, ∀X̄ ∈ TM̄, (3.8)

where u is a timelike unit vector, ∇̄ denotes the Levi-Civita connection and f is a function on M̄ . Consider
Gaussian normal coordinates (x0 = t, xa) on M̄ such that u = ∂/∂t and ḡ = ḡijdx

idxj = −dt2 + ḡabdx
adxb,where

i, j are over 0, 1, · · · , n and a, b over 1, · · · , n and ḡab are functions of all the coordinates xa. Let Mt(t=q), for some
constant q, be a spacelike slice orthogonal to u and Xt = ∂/∂xa a coordinate vector field tangent to Mt. Then
equation (3.8) reduces to ∇̄∂/∂xa∂/∂t = f(∂/∂xa) which further implies (with some computation) that

∂ḡab
∂t

= 2fḡab. (3.9)

Integrating (3.1) we obtain ḡab = e2
∫
f(t,xa)dtγab, where γab is a fixed Riemannian metric on the initial slice

t = 0. Set e
∫
f(t,xa)dt = S(t, xa). Then, the metric ḡ of (M̄, ḡ) is of the form ḡij = −dt2 + S2(t, xa)γabdx

adxb whose
spacelike slices orthogonal to u are self-conformal. If S is a function of t alone, then, above metric reduces to
the following Generalized Robertson-Walker(GRW) spacetime [3]:

ḡij = −dt2 + S2(t)γabdx
adxb (3.10)

which we assume in this paper. It is a warped product, with base an open interval of a real line of negatively
defined metric and fibre a Riemannian manifold not of constant sectional curvature, in general. The reader
will see that the kinematic condition (3.8) on the spacetime metric plays an important role in physical use of
the Subsection 2.1. Let (M0, γ) be a fixed spacelike hypersurface in M̄ passing through a point p of M̄ via the
normal exponential map along M0 in M̄ with metric γ induced from ḡ . Assume that x = (x1, · · · , xn) are the
coordinates in (Mt, gt) centered on p so that the metric gt is given by

gt = S2(t)γabdx
adxb, 1 ≤ a, b ≤ n.
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Denote by [gt] and [ut] the families of Riemannian metrics and unit normals, respectively, where each ut satisfies
the relation (3.8) and

F = {[Mt], [gt], [ut]) : [gt] = [S2(t)]γ} (3.11)
a family of spacelike hypersurfaces of (M̄, ḡ) conformally related to the spacelike hypersurface (M0, γ, u0). We
take (Mt, gt, ut) a member of the family F for some t = q, with the understanding that the results are same for
any other member, where g is its induced Riemannian metric of the form

gt(Xt, Yt) = S2(t)γ(Xt, Yt), ∀Xt, Yt ∈ TMt. (3.12)

The Gauss-Weingarten formulas are

∇̄Xt
Yt = ∇Xt

Yt +B(Xt, Yt)ut

∇̄Xt
ut = Aut

Xt, ∀Xt, Yt ∈ TMt,

where B(Xt, Yt) = g(Aut
Xt, Yt) and Aut

denotes shape operator. From these two equations we obtain

R̄(Xt, Yt)Zt = R(Xt, Yt)Zt +AB(Yt, Zt)ut
Xt −AB(Xt, Zt)ut

Yt

+(∇Xt
B)(Yt, Zt)− (∇Yt

B)(Xt, Zt), (3.13)

where R̄ and R denote the curvature tensors of M̄ and Mt, respectively and X(u) vanishes ∀X ∈ TMt. Also,

(∇Xt
B)(Yt, Zt) = Xt(B(Yt, Zt))−B(∇Xt

Yt, Zt)−B(Yt, ∇Xt
Zt).

Theorem 3.2. Let (M̄, ḡ) be a (1 + n)-dimensional GRW-spacetime such that ḡ satisfies (3.8) and F = {[Mt], [gt], [ut]) :
[gt] = [S2(t)]γ} is a family of its spacelike hypersurfaces. Then,

(1) each member (Mt, gt, ut) of F is totally umbilical in M̄ with its mean curvature equal to f = Trace(Aut
)/n.

(2) If f is a non-zero constant and M̄ is Ricci flat then each member of F is an Einstein hypersurface whose non-zero
scalar curvature r = 2(nf)2.

(3) If f = −(r/n) and n > 2, then, each member of F is ARS-Einstein hypersurface with r = 1/2 and the evolution
equation (1.5) is given by

£
V
gt(Xt, Yt) = 2 (Φ− (1/2n)) gt(Xt, Yt) ∀Xt, Yt ∈ TMt. (3.14)

Proof. Using (3.8) in the Weingarten equation we get AutXt = fXt which implies B(Xt, Yt) = fg(Xt, Yt).
Therefore, each Mt is totally umbilical in M̄ with f = Tr.(Aut)/n which proves (1). Now using AutXt = fXt,
B(Xt, Yt) = fg(Xt, Yt) and f constant we get

AB(Yt, Zt)ut
Xt = fg(Yt, Zt)Aut

Xt = f2g(Yt, Zt)Xt,

AB(Xt, Zt)ut
Yt = fg(Xt, Zt)Aut

Yt = f2g(Xt, Zt)Yt.

R̄(Xt, Yt)Zt = R(Xt, Yt)Zt − f2 (g(Xt, Zt)Yt − g(Yt, Zt)Xt) + 0− 0.

Then, (3.13) reduces to
R̄(Xt, Yt)Zt = R(Xt, Yt)Zt − 2f2g(Xt, Zt)Yt,

where we have used one of the curvature identities. Thus, we get the following relation between the Ricci
tensors of M̄ and Mt.

R̄(Xt, Yt) = R(Xt, Yt)− 2nf2g(Xt, Yt), ∀Xt, Yt ∈ TMt.

By hypothesis, R̄(Xt, Yt) = 0. Therefore, R(Xt, Yt) = 2nf2g(Xt, Yt) which implies that (Mt, gt) is an Einstein
hypersurface whose non-zero scalar curvature r = 2(nf)2 which proves (2). Now let f = −r/n. Substituting
Aut

Xt = fXt for Xt = ∂/∂xa in the Weingarten equation and with straightforward computation we get

∂gt
∂t

= −(2r/n)gt,

which is the Ricci flow equation (1.1) for the Einstein (Ric = (r/n)gt, r 6= 0, (n > 2) hypersurface (Mt, gt).
Moreover, taking f = −(r/n) in r = 2(nf)2 we get r = 2r2. Since r 6= 0 the only possibility is that r = 1/2. Thus,
(Mt, gt) is ARS-Einstein hypersurface (see details in Subsection 2.1) which completes the proof.

The proof of following corollary easily follows from the Proposition 2.2.

Corollary 3.1. Under the hypothesis of Theorem 3.2, if f = −(1/n) then each (Mt, gt) admits RI symmetry
(£V R(Xt, Yt) = 2αR(Xt, Yt)) with α = Φ− 1/2n. If α = 0, then, each (Mt, gt) is steady RS-Einstein hypersurface
of (M̄, ḡ).
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4. Discussions

In this paper we have used some basic results of a curvature inheritance(CI) symmetry in the study of
semi-Riemannian ARS-manifolds and their applications to spacetimes of general relativity. The motivation
originated from the observation that the evolution equation (1.5) of the ARS vector V is a particular case
of the general solution (2.6) of the curvature identity (2.5) of CI symmetry. This work is the sequel to my
previous paper [11] which was a restricted case of covariant constant Ricci tensor of an ARS-manifolds. Here
we claim that use of a CI symmetry in this paper is an important step forward towards an improvement of
our previous paper on the geometry and physics of almost Ricci solitons. To clarify our claim, we first show
that our Theorem 2.1 (supported by three mathematical models of ARS-manifolds) is applicable to a large
variety of Riemannian and semi-Riemannian ARS-manifolds and not just the restricted case of Ricci symmetric
manifolds. On the physical use of our Theorem 2.1, recall from a paper by Hall and Da-Costa [14] that the
existence of covariant constant Ricci tensor must exclude some spacetimes including the case of perfect fluid
Einstein field equations. We highlight that contrary to the previous restricted paper our Theorem 3.1 shows
the possible existence of perfect fluid solutions for all the three cases of ARS-spacetimes. Also, notice from the
three classes of solutions of Theorem 3.1 that as the fluid revolves parallel to the velocity vector u, the deviation
of the Ricci tensor Rij from the metric tensor gij causes change in the fluid pattern which is governed by the
two variables β and Φ. Therefore, our physical model is applicable to any specific problem under investigation
by adjusting the magnitude of the ARS vector field V. Moreover, our Theorem 3.2 opens the possibility of study
on mean curvature flow of ARS-hypersurfaces of semi-Riemannian or spacetime manifolds.
Open problems.(a) Observe that Theorem 3.1 only gives general relations for (µ+ 3p) in terms of the two
quantities (β,Φ) for all the three cases (expanding, steady or shrinking) but, just like the case of examples for
the Riemannian Ricci solitons discussed in Chow-Knopf [6, Chapter 2], there is a need to find specific examples
of solutions for the three cases. Thus, we propose further research on

“ Exact perfect fluid solutions for the three cases of the ARS-spacetimes".

(b) Since the modified theory of the almost Ricci solitons(ARS) has just been introduced, there is a need to
develop its basic results with focus on similarities and differences with the key results of Riemannian Ricci
solitons and to justify the replacing of constant λ by a function Φ in the ARS evolution equation. A complete
analysis on the existence of three classes of ARS-solutions for Riemannian and semi-Riemannian manifolds
with their physical interpretation is desirable.
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